
The OpenAMP System Reference Project

Tomas Evensen, CTO Open Source, Xilinx

Nathalie C. Chan King Choy, Open Source Program Manager, Xilinx

Recap: What is OpenAMP trying to solve?

2

Heterogeneous Embedded System

 Multiple core clusters

 A53, R5, PMU, MicroBlaze

 Multiple Execution Levels (EL)

 EL0 – User space – Linux apps, Containers, RTOS apps

 EL1 – OS space – Linux kernel, RTOS + RTOS apps

 EL2 – Hypervisor – Xen, …

 EL3 – Firmware – Trusted Firmware

 Multiple Security Environments

 TrustZone (TZ) – HW protecting resources (e.g. memory)

 Trusted Execution Environment (TEE) – SEL1

 Multiple Operating Environments (OE)

 Linux – including Android

 Free and commercial RTOS’s

 FreeRTOS, Zephyr, VxWorks, Integrity, Nucleus, uC/OS, OSE, ThreadX

 QNX/Neutrino, Sciopta, eT-kernel, Lynx, PikeOS, …

 Bare metal (no OS) is common on smaller cores

 Hypervisors – Xen, Jailhouse, commercial

 Firmware/boot loaders – Trusted FW, PMU FW, uboot, …

Secure State

Trusted Firmware (TF)

App App

Trusted Execution

Environment (TEE)

Non-secure State

Hypervisor

App App

Linux

App

RTOS

FPGA

MicroBlaze

App App

RTOS

MicroBlaze

App

Bare Metal

A53

Core 0

A53

Core 1

A53

Core 2

A53

Core 3

RPU

R5 Core 0

App App

RTOS

R5 Core 1

App

Bare Metal

Container

App

EL0

EL1

EL2

EL3

App App

Platform Management Unit (PMU)

PMU Firmware

3

Simplifying SW for Heterogenous Environments

Today, most heterogeneous environments are cobbled together ad-hoc

 Everybody coming up with their own shared memory scheme

There is a need to standardize how environments interact

 Configuring the environments

 Managing (lifecycle) the environments

 Passing messages between environments

 Share resources between environments

 Porting any OS using a standardized abstraction layer

Open source implementation is fastest way to standardization

 Especially if based on already existing open source projects

OpenAMP is a Linaro Community Project solving these kinds of problems

4

More information
GitHub project

 https://github.com/OpenAMP/

 Also, Lopper lives at devicetree-org: https://github.com/devicetree-org/lopper

OpenAMP Wiki

 https://github.com/OpenAMP/open-amp/wiki

 Notes from calls

 Features being worked on & under consideration

Community Project Website

 https://www.openampproject.org/

5

https://github.com/OpenAMP/
https://github.com/devicetree-org/lopper
https://github.com/OpenAMP/open-amp/wiki
https://www.openampproject.org/

OpenAMP System Reference Project

6

OpenAMP System Reference Project

Document and showcase OpenAMP technologies working together

 Build, configuration, lifecycle management, messaging, higher level services

 Crawl, walk, run – start with what we have today, then add more advanced features

Multi-vendor targets

 Start with QEMU, Xilinx and ST boards

Build everything in open source

 Without the need of vendor SDKs – Make it as similar as possible between vendors

 Ok to use binaries for vendor specific first stage FW

 Start with Yocto/Open Embedded for Linux, Zephyr/Bare Metal, OpenAMP, U-Boot, TF-A?

 Eventually support other build systems and prebuilt binaries

Simplify HW configuration and allocation

 Start with today’s manual configuration

 Showcase System Device Trees and Lopper for a complete data driven configuration

 Including FW, Linux, RTOS(es), XEN, etc.
7

OpenAMP System Reference Project

Multiple lifecycle use cases and OS configurations

 Start with Linux boots, dynamically starts RTOS/BM (from kernel and user space)

 Add other use cases (static boot, RTOS-RTOS, RTOS-Linux)

 Initially use Zephyr as RTOS

 Later add support for proprietary RTOSes (VxWorks/Nucleus)

 Later add hypervisor support (XEN)

Demonstrate low-level messaging

 Passing small and big buffers, zero-copy

 Measure throughput and latency

Demonstrate higher level interfaces through VirtIO

 Filesystem -> Access Linux files from RTOS

 Sockets -> Access network from RTOS

 UART -> Access terminal from RTOS

https://github.com/OpenAMP/openamp-system-reference/wiki/

8

SoC

Linux
BM /

RTOS

rpmsg

(remote)

cortex-R

(host)

cortex-A

remoteproc

https://github.com/OpenAMP/openamp-system-reference/wiki/

Thank You

 AMP: Aysmmetric Multi-Processing

 API: Application Programming Interface

 APU: Application Processor Unit

 EL: Execution Level

 FPGA: Field-Programmable Gate Array

 FuSa: Functional Safety

 HCI: Host Controller Interface

 IPC: Inter-Processor Communication

 LAVA: Linaro Automation & Validation

Architecture

 MPSoC: Multi-Processing System-on-Chip

Acronyms

 OE: Operating Environment

 OS: Operating System

 PMU: Platform Management Unit

 RPU: Real-Time Processor Unit

 RTOS: Real-Time Operating System

 SEL: Secure Execution Level

 SoC: System-on-Chip

 TEE: Trusted Execution Environment

 TSC: Technical Steering Committee

 TZ: TrustZone

 WG: Working Group

10

