

### The OpenAMP System Reference Project

Tomas Evensen, CTO Open Source, Xilinx Nathalie C. Chan King Choy, Open Source Program Manager, Xilinx



# **Recap: What is OpenAMP trying to solve?**

#### **Heterogeneous Embedded System**

- Multiple core clusters
  - A53, R5, PMU, MicroBlaze
- Multiple Execution Levels (EL)
  - EL0 User space Linux apps, Containers, RTOS apps
  - EL1 OS space Linux kernel, RTOS + RTOS apps
  - EL2 Hypervisor Xen, ...
  - EL3 Firmware Trusted Firmware
- Multiple Security Environments
  - TrustZone (TZ) HW protecting resources (e.g. memory)
  - Trusted Execution Environment (TEE) SEL1
- Multiple Operating Environments (OE)
  - Linux including Android
  - Free and commercial RTOS's
    - FreeRTOS, Zephyr, VxWorks, Integrity, Nucleus, uC/OS, OSE, ThreadX
    - QNX/Neutrino, Sciopta, eT-kernel, Lynx, PikeOS, ...
  - Bare metal (no OS) is common on smaller cores
  - Hypervisors Xen, Jailhouse, commercial
  - Firmware/boot loaders Trusted FW, PMU FW, uboot, ...





Platform Management Unit (PMU)

### **Simplifying SW for Heterogenous Environments**



- Today, most heterogeneous environments are cobbled together ad-hoc
  - Everybody coming up with their own shared memory scheme
- There is a need to standardize how environments interact
  - Configuring the environments
  - Managing (lifecycle) the environments
  - Passing messages between environments
  - Share resources between environments
  - Porting any OS using a standardized abstraction layer
- Open source implementation is fastest way to standardization
  - Especially if based on already existing open source projects

#### **OpenAMP is a Linaro Community Project solving these kinds of problems**

### **More information**

- GitHub project
  - https://github.com/OpenAMP/
  - Also, Lopper lives at devicetree-org: <u>https://github.com/devicetree-org/lopper</u>
- OpenAMP Wiki
  - https://github.com/OpenAMP/open-amp/wiki
  - Notes from calls
  - Features being worked on & under consideration
- Community Project Website
  - https://www.openampproject.org/







# **OpenAMP System Reference Project**

### **OpenAMP System Reference Project**

OpenAMP

- Document and showcase OpenAMP technologies working together
  - Build, configuration, lifecycle management, messaging, higher level services
  - Crawl, walk, run start with what we have today, then add more advanced features
- Multi-vendor targets
  - Start with QEMU, Xilinx and ST boards
- Build everything in open source
  - Without the need of vendor SDKs Make it as similar as possible between vendors
    - Ok to use binaries for vendor specific first stage FW
  - Start with Yocto/Open Embedded for Linux, Zephyr/Bare Metal, OpenAMP, U-Boot, TF-A?
    - Eventually support other build systems and prebuilt binaries
- Simplify HW configuration and allocation
  - Start with today's manual configuration
  - Showcase System Device Trees and Lopper for a complete data driven configuration
    - Including FW, Linux, RTOS(es), XEN, etc.

### **OpenAMP System Reference Project**

- Multiple lifecycle use cases and OS configurations
  - Start with Linux boots, dynamically starts RTOS/BM (from kernel and user space)
  - Add other use cases (static boot, RTOS-RTOS, RTOS-Linux)
  - Initially use Zephyr as RTOS
  - Later add support for proprietary RTOSes (VxWorks/Nucleus)
  - Later add hypervisor support (XEN)
- Demonstrate low-level messaging
  - Passing small and big buffers, zero-copy
  - Measure throughput and latency
- Demonstrate higher level interfaces through VirtIO
  - Filesystem -> Access Linux files from RTOS
  - Sockets -> Access network from RTOS
  - UART -> Access terminal from RTOS

https://github.com/OpenAMP/openamp-system-reference/wiki/









## **Thank You**

#### Acronyms

- AMP: Aysmmetric Multi-Processing
- API: Application Programming Interface
- APU: Application Processor Unit
- EL: Execution Level
- FPGA: Field-Programmable Gate Array
- FuSa: Functional Safety
- HCI: Host Controller Interface
- IPC: Inter-Processor Communication
- LAVA: Linaro Automation & Validation Architecture
- MPSoC: Multi-Processing System-on-Chip

- OE: Operating Environment
- OS: Operating System
- PMU: Platform Management Unit
- RPU: Real-Time Processor Unit
- RTOS: Real-Time Operating System
- SEL: Secure Execution Level
- SoC: System-on-Chip
- TEE: Trusted Execution Environment
- TSC: Technical Steering Committee
- TZ: TrustZone
- WG: Working Group

